Intermittency and blob dynamics in the TORPEX device

Ivo Furno, A. Fasoli, D. Iraji, B. Labit, P. Ricci, C. Theiler

Centre de Recherches en Physique des Plasmas
École Polytechnique Fédérale de Lausanne, Switzerland

M. Spolaore, N. Vianello
Consorzio RFX, Associazione Euratom-ENEA sulla Fusione
Corso Stati Uniti 4, 35127 Padova, Italy

13th EU-US TTF Workshop - 3rd EFDA TTG Meeting
Córdoba, Spain, September 7 - 10, 2010
Outline

- Mechanism for blob generation from interchange waves
- Detailed study of blob propagation
- First measurements of 2D parallel current inside a blob
- Conclusions and outlook
Plasma produced by EC-waves
Open field lines - no plasma current
Extensive diagnostic coverage for turbulence and plasma response (electrost., magnetic probes)

R = 1 m, a = 0.2 m

H_2, He, Ne, Ar plasmas

$B_{tor} \leq 100$ mT; $B_z \leq 10$ mT; $\rho_s/a \approx 0.02$

$T_e = 2 – 20$ eV; $n_e = 0.1–5 \times 10^{16}$ m$^{-3}$

Instability diagram

\[N \propto \frac{1}{B_z} \]

Drift wave

Resistive Interchange

\[k_{\text{toroidal}} = 0, \quad \lambda_z = N \Delta \]

\[k_{\parallel} \neq 0 \text{ due to resistivity} \]

Ideal Interchange

\[N \sim 2 \]

\[k_{\parallel} = 0, \quad \lambda_z = \Delta \]

Ideal interchange regime: waves and blobs
Blob generation mechanism

- Time resolved 2D profiles of n_e, T_e, ϕ_{pl} from conditional sampling
- Interchange wave moves with v_{ExB}
- Radially elongated structures form from positive cells
- ExB flow shear breaks off the structures and forms blobs
 - Structures form in $\sim 100 \mu s$ estimated shearing time
 \[
 \frac{1}{\tau_{sh}} = \frac{k_z L_r}{2\pi} \frac{\partial V_{ExB,z}}{\partial r} \sim (100 \mu s)^{-1}
 \]
 H. Biglari et al., PF B (1990)
- Energy is transferred from shear flow to blobs

I. Furno et al., PRL 100, 055004 (2008); C. Theiler et al., PoP (2008); A. Diallo et al., PRL (2008)
Motion of filaments/blobs in simple geometry

- Steel limiter on low-field side, defining region with
 - Constant curvature along field lines and connection length (~$2\pi R$)
 - Near-perpendicular incidence of B-field lines, no magnetic shear

- Blobs identified by pattern recognition, providing
 - Radial velocity $\Rightarrow v$
 - Vertical size $\Rightarrow a$
 - Density $\Rightarrow \delta n_e, n_e$

C. Theiler et al., PRL 103, 065001 (2009); S. H. Müller et al., PoP 2006.
Joint probability of blob velocity – size

- Similar sizes in all gases
- Similar values of $\delta n/n$
- Mean velocity of blobs over their entire trajectory
- Significant differences in the typical velocity, ranging from 500 m/s (Ar) to 2000 m/s (He)

Range of blob sizes below diagnostic resolution
Generalization of 2D blob models and scaling laws

Key question to understand blob motion is which mechanism compensates curvature-driven charge separation

Vorticity equation

\[- \text{sign}(B_z) \frac{2c_s^2 m_i}{RB} \frac{\partial n}{\partial z} = \frac{ne^2 c_s}{T_e L} \phi \nabla \phi + \frac{nm_i D}{B^2} \nabla^2 \phi + \frac{nm_i}{B^2} v_{in} \nabla^2 \phi\]

velocity \(= \left(\frac{2L\rho_s^2}{R^3}\right)^{1/5} c_s\)

size \(= \left(\frac{4L^2}{\rho_s R}\right)^{1/5} \rho_s\)

Fig. from Krasheninnikov et al.

\[\tilde{v}_{blob} = \frac{\sqrt{2\tilde{a}}}{1 + \sqrt{2\tilde{a}}^{1/2}} + \tilde{\eta} \sqrt{\tilde{a}} \frac{\delta n}{n}\]

C. Theiler et al., PRL 103, 065001 (2009).
Comparison with 2D scaling laws

Experimental data in normalized units

Damping due to ion-polarization currents
O. E. Garcia et al., PoP 2005
J. R. Myra et al., PoP 2005

Damping due to parallel currents
S. I. Krasheninnikov, PLA 2001
Two methods to measure $J_{//}$ inside a blob

- Flat one-directional LP (8 mm diam.)
 - at limiter potential $\Rightarrow J_{//}$ is measured
 - 3 cm away from the limiter

- Current probe $\Rightarrow \partial B_{r,z,t} / \partial t \Rightarrow J = \nabla \times B / \mu_0$

 M. Spoladore, N. Vianello et al, PRL 102, 165001 (2009)

Conditional sampling \Rightarrow time resolved 2D profiles of $J_{//}$
Dipolar structure of $J_{//}$ is observed inside a blob in H_2 and He.

The dipole is not perfectly balanced.
How important is $J_{||}$ for the blob dynamics?

Vorticity equation

$$- \text{sign}(B_z) \frac{2Lc_s^2 m_i}{RB} \frac{\partial n}{\partial z} = -2 \cdot J_{||,\text{sheath}}^{L/2}$$

Hydrogen

Helium

Charge separation **IS MOSTLY** damped by parallel currents to the sheath

Charge separation **IS NOT** damped by parallel currents to the sheath
Conclusions

- In TORPEX, blobs form from an interchange wave crest that radially elongates and is eventually sheared off by the $\mathbf{E} \times \mathbf{B}$ flow.

- Agreement between data and a generalized 2D model for blob speed and size.
 - Parallel currents to the limiter, cross-field ion polarization currents, and ion-neutral collisions

- First detailed 2D measurements of parallel current inside a blob have been obtained.
 - Parallel currents to the limiter are important in balancing charge separation in hydrogen, but not He

- Outlook: blob control through boundary conditions