Triggered Confinement and Pedestal Temperature Enhancement in NSTX H-mode Discharges

R. Maingi, J.M. Canik, R. Bell, S. Gerhardt, B.P. LeBlanc, S. Kaye and the NSTX team

15th EU-US Transport Task Force Meeting
Cordoba, Spain
Sep 7, 2010
Enhanced Pedestal H-mode: a second transition with increased edge temperature and τ_E

- Initially observed in NSTX as transient phase
- Currently being developed as long pulse advanced scenario

Maingi, JNM 390-391 (2009) 440
Common Enhanced Pedestal H-mode Characteristics

• A second transition to enhanced confinement and high pedestal $T_e, T_i \leq 700$ eV
 - Second transition after large ELM, either natural or triggered by 3D fields
 - W_{MHD} ramps ~ linearly in time for ~ 0.1 s, typically $dW/dt \sim 0.4*P_{NBI}$
 - $H_{H97L} \geq 2.5$, and as high as 3.5 transiently
 - EP H-mode phase observed during l_p ramp or flat-top

• Common feature: edge v_ϕ develops large gradient, with a large drag, often near the $q=3$ surface

• Low loop voltage, high β_N (due partly to low pressure peaking factor)

✓ high performance, long pulse candidate
Comparison of Standard and EP H-mode evolution

- Same I_p, P_{NBI}
- Higher W_{MHD} during EPH
- Higher H_{97L} during EPH
- ELM trigger for EPH

Maingi, JNM 390-391 (2009) 440
Comparison of Standard and EP H-mode profiles: Stronger T gradients, local minimum in V_{tor}
Enhanced Pedestal H-mode barrier width size comparable to gyro-diameter

- Edge scale lengths for both T_i and n_C approach the gyro-diameter during EPH-mode

- Ion gyroradius $\rho_i \sim 0.7$ cm relative to $|B|$, owing to combination of local $T_i \sim 350$ eV and $|B| \sim 0.35$ T at outer midplane
 - Approaching or at the fundamental limit on the gradient scale length?

- Minimum v_ϕ seems to be in center of highest ∇T_i region
Changes in v_ϕ accompany high $T_{e,i}^{\text{ped}}$ in Enhanced Pedestal H-mode

- First order radial force balance:
 \[E_r + v_\theta B_\phi = v_\phi B_\theta + \nabla P_c / 6 e N_c \]

- EPH mode has $v_\phi \sim 0$ near separatrix, probably due to drag from an island, such that ∇P term dominates v_ϕ over large region

- Large ∇v_ϕ indicative of large E_r'

- v_θ negligible (recent measurement)
Spontaneous EPH-mode also observed during I_p flat-top

- Same I_p
- Lower P_{NBI}
- Higher W_{MHD} during EPH
- Higher H_{97L} during EPH
- ELM trigger for EPH
3D fields used for ELM pace making may trigger EPH during periods when 3D fields switched off.
EPH-mode phase observed for several τ_E, up to ~ 300 msec

EP H-mode
H-mode
separatrix
Thermal and angular momentum transport reduced over outer half of plasma

EP H-mode

H-mode

\[\chi_{\text{eff}} (\text{m}^2/\text{s}) \]

\[\chi_{\phi} (\text{m}^2/\text{s}) \]

![Graph showing thermal and angular momentum transport](image)
Spatial extent of significant E_r shear region doubled in size during EP H-mode

- T_i pedestal height correlates with edge toroidal rotation shear
High β_{pol} results in high bootstrap and non-inductive fraction ($f_{NI} \sim 0.65$ from TRANSP)

- $I_p = 0.9$ MA, $P_{NBI} = 3.8$ MW
- $\beta_p \sim 1.5$, very high for 0.9 MA
- Loop voltage low during EPH, due to high bootstrap
- Very little or no flux consumption
High bootstrap and non-inductive fractions, high thermal τ_E during EPH phase

- f_{bs} between 0.5-0.6, and f_{NI} between 0.6-0.7

- $H98y2$ between 1.6 and 1.8, with τ_E^{th} between 90-100 msec

S. Gerhardt, S. Kaye
Effort underway to develop EPH-mode as a high performance, long pulse target

• Initiating EPH-mode:
 - Lithium conditioning for ELM-free conditions
 - RMP trigger of a large ELM
 - Since density profile control may be important, *supersonic gas injection (SGI) may provide easier access (longest pulse EPH had SGI)*

• Sustaining EPH-mode:
 - Use β feedback + $n=1$ feedback to avoid β limit
 - Pre-program NBI reduction, if needed
 - Raise B_t or drop I_p or more shaping to delay $q_0=1$ crossing
The Enhanced Pedestal H-mode has favorable characteristics and improved long pulse prospects

- EP H-mode is characterized by high pedestal temperature, increased edge v_ϕ, improved confinement
- EP H-modes occur naturally following large ELMs, or can be triggered with 3D fields
- Recently, EPH phases were obtained during I_p flat-top for several τ_E
- With the advent of β feedback on NBI and good n=1 feedback, extending the pulse length and using EPH as a high-performance target will be attempted in FY10 in NSTX
Backup
The Enhanced Pedestal H-mode (EPH) has favorable characteristics and improved long pulse prospects

- Energy confinement in NSTX H-modes is generally 0.8-1.2* ITER98y2 scaling
 - Note that τ_E increases stronger with B_t and weaker with I_p than 98y2
 - Several next step ST designs based on ~ 50% higher τ_E

- A transition to a (transiently) improved confinement with enhanced H-mode pedestal T_e, T_i observed a few years ago

- Characteristics of EP H-mode
 - Highest normalized energy confinement of any regime in NSTX, with $H89P \leq 3.5$ and $H98y2 \leq 1.8$

- Prospects for increasing pulse length
 - Can be triggered by large ELM or RMP-triggered ELM(!), with pulse length $\leq 3 \tau_E$ (up to 300 msec) observed in 2009
EP H-mode profiles evolved continuously during I_p ramp

T_e [keV]

T_i [keV]

n_e [10^{19} m$^{-3}$]

V_{tor} [km/sec]

R [m]
EPH-mode phases up to several hundred msec observed recently (more common with lithium?)

- $I_p = 0.9$ MA, $P_{\text{NBI}} = 3.8$ MW
- $W_{\text{MHD}} \leq 350$ kJ
- $\beta_n > 6.5$
- $\tau_E \geq 80$ msec for 225 msec
- $H_{97L} \leq 3$

- Natural ELM trigger for EPH
- Not sure of termination event

Maingi, PRL (2010) at press

Maingi, PRL (2010) at press
High β_N phase maintained for 2 τ_E

- $I_p = 0.9$ MA,
 $P_{NBI} = 3.8$ MW
- $W_{MHD} \sim 325$ kJ
- $\beta_N \sim 6.5$
- $\tau_E \geq 80$ msec for 225 msec
- $H97L \geq 2.5$
- EPH phase is ELM-free
Long pulse EPH – density still evolving slowly, Z_{eff} rising, but P_{rad} seems reasonable

![Graph showing I_p, n_e, P_{rad}, and Z_{eff} over time.](image)
EPH may occur naturally in recovery period following ELM/braking triggers.
EP H-mode profiles evolve continuously, although recovery from trigger takes a little time.

- Discharge had Li evaporation to improve performance in regular H-mode.
EPH-mode can have transient H89P up to 4

134987: $t_1=0.75$
134991: $t_2=1.0$ (EPH)