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Motivation W

¥

Connections between rotation and plasma stability and
confinement make predictive capability and active control [of
rotation profile a critical area ebkamakresearch

Rotation profile on most present damkamaksdominated by
NBI torque, which is quite wellnderstood

¥ However, themomentum transport controlling final
rotation profile iSNOT

¥ In addition, understanding oftrinsic torques is essential
for complete picture adibkamakrotation
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NBI will be less effective in next generation reactors
¥ Rely on alternate heating schemes B¢CBH, ECRH
¥ Both of which are<NOWN to impact plasma rotation [2-8]

¥ Recent AUG experiments further characterize plasma rotation and
momentum transport in NBl and ECRH heated plasmas



) Overview
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¥ Plasma Response to ECRH PoMer

Experiment description

Effect on temperature and density profiles

Rotation behavior: impurities and main ions

Sensitivity to ECRH deposition location and power level
Correlations with T, T,, and T/T,

K K K K K

¥ Considered Explanations

Increase in momentum diffusivity
Changes in torque deposition profiles
Coriolis pinch

Change in fast ion distribution
Estimate of required outward pinch or counter-current torque

K K K K K

3/13



)

ASDEX Upgrade

ECRH affects nearly all global parametew

¥ LSN, | ,=600kA, B=-2.4-2.6T,qg5 ~6.5
¥ Heating scheme

¥NBI 2.5-5MW (H-mode H98 ~0.8)

¥0.5-1s long ECRH [9] pulses
(0.6-2.2MW)

for negligible current drive

¥ Gyrotrons central deposition balanced| ~

F Pnei (MW) Shot 258301
r I:)rad (MW)

- Pecrp(MW)

¥ Density n ~ 4.7-5x16°m3
¥ Peaks with ECRH

¥ Sharp increase in,&nd o T,W/ECRH |
¥ Sharp decrease inand g T, w/ ECRH

¥ Dramatic decrease In rotatiori ECRH
¥ edge rotation unaffected —

¥ Sawteeth fishbonean non-ECRH
phases

¥ 1:1 mode (,,, <0.25) in ECRH phases
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Clear changes observed in plasma profiw
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Without ECRH O e oT.

¥ T, and T profiles quite similar T
¥ n, only moderately peaked 4.0 1
no ECRH 3.2s |

>
. Q
¥ ng flat/ slightly hollow (0.2<,,, <0.8) E, with ECRH 4.5

With ECRH 2'0;
¥ T,and g T, increase via direct heating 4 4
¥ reacts <1ms after ECRH T2
¥ T and g T, decrease ~ increaséd 3
¥ n, peaking increases o b
¥ greatest change around mid-radius

=

¥ ~10ms after ECRHA transport effect
¥ consistent with ITG turbulence theory [10
¥ not observed in highéy discharges

¥ ng peaks, but less than (mid-radius)

¥ Appears to be consistent with theory see R
posterC. Angioni P2.13 (this conference)] pol

n 4x10°m3 & n
o

e

0
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@ Most dramatic changes observed in \W
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200—— "
; NOECRH o v ]

i TRANSP 1

¥ Without ECRH (NBI heated)
¥ Peaked, co-current profiles

¥ Shape/magnitude depend on

beam torque deposition, = £ |

magnetic modes, MHD, etcE &€ 10q
>LL

¥With ECRH (NBI heated)

¥ Rotation decreases (40-60ms) 50:
forming flat or slightly hollow

With ECRH ¢ T "~

150}

profiles !
¥ Remains co-current %_o
. . R
¥ The change in rotation .

¥ is corroborated by change in core mode frequency
¥ extendsover more than half the plasma radius!(<0.6)
¥ for Pecry >2MW can extend to pedestal top
¥ appears to be core effect connected to chang@g, profiles
¥ no propagation has been seen toward or from the plasma edge

¥ Main ion rotation (TRANSP) behaves nearly identically to impurities
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V. change sensitive to deposition Iocaticw

¥ 3 point shot to shot ECRH deposition
location scan from 0 ¥, <0.5

¥ Plasma parameters held constant
¥ ECRH power =1.1MW

¥ No change in rotation

¥ Slight decrease (20-30km/s) inside
deposition radius @-g~0.25)

80

V (km/s)

60

40"

140-
120

100~

20t

ot

Time 2.1-2.43:

#25675 No ECRH
#25676 No ECRH
#25653 No ECRH

¥ With on-axis heating rotation collapses 4%
120f

to slightly hollow profile l.cg~=0.0

— 100t

¥ It change depends on Then enough £
off-axis power should induce V changze

¥ Rotation change also sensitive to level

80

of ECRH power 40:

¥ Flattest (most hollow) profiles obtained

for highest ECRH power ot
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Time 2.6-2.9s]

#25675 ECRHR~ 0.5 |
#25676 ECRHR~0.25—:
#25653 ECRHR~ 0.0 1




@ ECRH separates ion and electron charm
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12 f ! f f

¥ Rotation change sensitive to the S RIS ERTRERINE a &8
level of ECRH power S S
¥ Flattest (most hollow) profiles & of A
obtained for highest ECRH » & 4 RiLTe
powers ° 6k o v RILT]
-
¥ Rotation change correlates withe | % B
¥ Increasing R/, o SR ey
¥ Decreasing R/, 2.0 5 5 s
¥ Increasing T, d ¢ . ]
18 o
S S T
— |
e
1.2? ,,,,,, RPN PO U
1.0
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¥ Plasma Response to ECRH Power

Experiment description

Effect on temperature and density profiles

Rotation behavior: impurities and main ions

Sensitivity to ECRH deposition location and power level
Correlations with Te, Ti, and Te/Ti

K K K K K

¥ Considered Explanations

— ¥ Increase in momentum diffusivity
¥ Changes in torque deposition profiles
Coriolis pinch
Change in fast ion distribution
Estimate of required outward pinch or counter-current torque

#K K K
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¥ If momentum transport is purely diffusive ,=nmD_.

dv,
dr

How big would the diffusion have to be?

¥ Low ECRH power and/or

strong central torque
)
increases diffusivity (P=0.5-1)

¥ High ECRH power and/or

low central torque
¥ D, > 100n¥s! (P>10)
¥ Negative diffusivities

Momentum diffusivity
plays an important role,
but canOt be the only
mechanism at work!
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/

40

fully explained by reasonable ‘g 5g

- G (Déuterium')
- G(TRANSP) 2.5MW
- Ryr=0.34  core NBI

1
=]

Increase in DcanOt explain all observaticw




@ ECRH does not effect torque depositiow
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1.0
I ECRH OFF 2.5-3.7%

ECRH ON 4.0-4.8s-

¥ Could changesin Tann,
result in different torque :
deposition profile? !

¥ Torque deposition calculated 0.4
with TRANSP

¥ No, no significant change in
torque between non- ECRH
and ECRH phases

0.8

0.2L
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@ ECRH does not affect fast ion distributioW
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0 x x : :
¥ Reduction/reversal ofCoriolis 1) " -,

| [ ]
momentum pinch in ECRH z
phases? St
¥ No, GS2 predictancrease inthe > 15
Coriolis pinch (inward) [ B PECRH=OMW | -
¥ due to its dependence og n 7T m PR oW | ]
gradient B -
'S 3 4 5 6 7 8 9
R/LT;j

[ Neutron Rate

¥M|ncreased loss of core fast ions 0.8
from plasma core?

¥ No, no significant mode activity
¥ Measured and TRANSP calculated

o
(0)]
LI T

6e14 Neutrons/s
o
=

0.2

neutron rates agree very well in all " Measured
phases 00 e
R I
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@ Additional term needed iIn momentum
wwe] CONSErvation equation to explaln observa

¥ Results suggest outwapihch or
counter-current directarque
¥ Residual stress momentum flux
triggered by ECRH induced changes
In core profiles? N
¥ Can estimat@inch by assuming: 10r N N

¥ o= L no ECRH 3-3.8s
. | Wwith ECRH 4.-4.8s

Convective Velocity (m/s)
(&)
I
/
#
7/
/[ S
[/ 5
Ly vy L

15 |
%.O 0.1 0.2 0.3 0.4 0.5 0.6

Aol <V> )
,(SNBI)dVO| meffn R< # >g$% dr Con<v%>:
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@ Additional term needed iIn momentum
wwe] CONSErvation equation to explaln observa

¥ Results suggest outwapihch or
counter-current directerque
¥ Residual stress momentum flux

Convective Velocity (m/s)
(&)
I
]

triggered by ECRH induced changes N
in core profiles? [ AN
¥ Can estimat@inch by assuming: 1or N
¥ _
¥ Can estimatéorque by additional BRI K R - SO B VS =R 5
assumption: 5

¥V, ., (a) remains unchanged
(b) scales with increase n

& 1
I 1 :
) £ OE | A
aol\& d(v,) - jf :
1 1 _II 2] E 3
, (SNB| + Sz)dVOI M NR(—— &y, Con<V%> S F 3
# /(" dr 4+ -1 ]
o F
S F
g F E
= _2;_ NBI delivered Torque (2.5MW) 3
E ECRH (constant ¥gp) ]
E ECRH (Vgonscaled withGy | 3
-3t . . . 1 . : : I : : :
0.0 0.1 0.2 0.3 0.4 0.5 0.6
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b Summary and Conclusions W
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¥ Dramatic decreases irtoroidal rotation have been observed
when ECRH is applied to low-current NBl heated H-mode
discharges in the ASDEX Upgraddokamak

¥ The change appears to be a core effect and is likely connected
to the ECRH induced changes in the core electron and ion
temperature profile

¥ Data can not be explained by
¥ an increase Iin diffusivity
¥ a modification to NBI torque deposition profile
¥ a preferential loss of fast ions
¥ a decrease i@oriolis pinch

¥ Results indicate presence of either an outward pinch or an
Intrinsic counter-current directed torque profiles
¥ Source of this convection/torque remains unclear
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@ Rotation well correlated with temperaturw
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¥ Rotation change sensitive to the
level of ECRH power

¥ Flattest (most hollow) profiles g“
obtained for highest ECRH =
powers >

: L, -

¥ Rotation change correlates with - h0 ECRH |

¥ Increasing R/, - with ECRH 4

¥ Decreasing R/
¥ Increasing TT,

¥ Gradient scale length of rotation
¥ linear with RL

¥ shows discrete jump with
iIncreasing RL, (=8)

¥ equivalentto JT,~1.4

(RIV,, p(dV [dr)




@ AUG diagnostics provide complete profilw
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¥ Impurity iontoroidalrotation,
temperature, and brightness measured
core charge exchange recombination
spectroscopy (CXRS) diagnostic
¥ 15 lines of sight
o<! ,<0.9

pol
~3cm radial resolution

¥

¥

¥ 20ms integration time

¥ B*% (494.467nm) or € (529.059nm)

¥ Electron temperature from electron cyclotron emission (ECE) diagnostic []

¥ Standard settings: 0!<,< 1.0
¥ Radial resolution ~1cm
¥ Temporal resolution ~ 31kHz

¥ Electron density from integrated data analysis (IDA) diagnostic

¥ Full profiles by combining edge lithium beam and line integrateferometryf]
¥ Temporal resolution ~ 20kHz
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