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Motivation 

¥! Rotation profile on most present day tokamaks dominated by 
NBI torque, which is quite well understood.  
¥! However, the momentum transport controlling final 

rotation profile is NOT 
¥! In addition, understanding of intrinsic torques is essential 

for complete picture of tokamak rotation 

¥! NBI will be less effective in next generation reactors 
¥! Rely on alternate heating schemes Ð i.e. ICRH, ECRH 
¥! Both of which are KNOWN to impact plasma rotation [2-8] 
¥! Recent AUG experiments further characterize plasma rotation and 

momentum transport in NBI and ECRH heated plasmas 

¥! Connections between rotation and plasma stability and 
confinement make predictive capability and active control of 
rotation profile a critical area of tokamak research 
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¥! Considered Explanations 

¥! Plasma Response to ECRH Power 

Overview 

¥! Increase in momentum diffusivity 
¥! Changes in torque deposition profiles 
¥! Coriolis pinch 
¥! Change in fast ion distribution 
¥! Estimate of required outward pinch or counter-current torque 

¥! Experiment description  
¥! Effect on temperature and density profiles 
¥! Rotation behavior: impurities and main ions 
¥! Sensitivity to ECRH deposition location and power level 
¥! Correlations with Te, Ti, and Te/Ti 
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ECRH affects nearly all global parameters 
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¥! LSN, Ip=600kA, Bt=-2.4-2.6T, q95 ~6.5 
¥! Heating scheme 

¥!NBI 2.5-5MW (H-mode H98 ~0.8) 
¥!0.5-1s long ECRH [9] pulses 

(0.6-2.2MW) 
¥! Gyrotrons: central deposition balanced 

for negligible current drive 
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¥! Density ne ~ 4.7-5x1019m-3 

¥! Peaks with ECRH 

¥! Sharp increase in Te and �øTe w/ECRH 
¥! Sharp decrease in Ti and �øTi w/ ECRH  
¥! Dramatic decrease in rotation w/ ECRH 

¥! edge rotation unaffected 

¥! Sawteeth / fishbones in non-ECRH 
phases 
¥! 1:1 mode (! pol <0.25) in ECRH phases  



Clear changes observed in plasma profiles 

¥! Te and �øTe  increase via direct heating 
¥! reacts <1ms after ECRH 

¥! Ti and �øTi decrease ~ increased " i 

¥! ne peaking increases 
¥! greatest change around mid-radius 
¥! ~10ms after ECRH �À transport effect 
¥! consistent with ITG turbulence theory [10] 
¥! not observed in higher Ip discharges 

¥! nB peaks, but less than ne (mid-radius) 
¥! Appears to be consistent with theory see 

poster [C. Angioni P2.13 (this conference)] 
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¥! Te and Ti profiles quite similar 
¥! ne only moderately peaked 
¥! nB flat/ slightly hollow (0.2<! pol <0.8) 

With ECRH 

Without ECRH 
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¥!The change in rotation 
¥! is corroborated by change in core mode frequency 
¥! extends over more than half the plasma radius (0<! pol<0.6) 

¥! for PECRH >2MW can extend to pedestal top 
¥! appears to be core effect connected to change in Te,i profiles 

¥! no propagation has been seen toward or from the plasma edge 
¥!Main ion rotation (TRANSP) behaves nearly identically to impurities 
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¥!Without ECRH (NBI heated) 
¥! Peaked, co-current profiles 
¥! Shape/magnitude depend on 

beam torque deposition,  
magnetic modes, MHD, etcÉ  

Most dramatic changes observed in V# 

¥!With ECRH (NBI heated) 
¥! Rotation decreases (40-60ms) 

forming  flat or slightly hollow 
profiles 
¥! Remains co-current 
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V# change sensitive to deposition location 

¥! 3 point shot to shot ECRH deposition 
location scan from 0 < ! pol <0.5 

¥! Plasma parameters held constant 

¥! ECRH power =1.1MW 

¥! No change in rotation 

¥! Slight decrease (20-30km/s) inside 
deposition radius (!ECRH=0.25)  

¥! With on-axis heating rotation collapses 
to slightly hollow profile !ECRH=0.0  

¥! If change depends on Te then enough 
off-axis power should induce V change 

¥! Rotation change also sensitive to level 
of ECRH power 
¥! Flattest (most hollow) profiles obtained 

for highest ECRH power 
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ECRH separates ion and electron channels 
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¥!Rotation change sensitive to the 
level of ECRH power 

¥! Flattest (most hollow) profiles 
obtained for highest ECRH 
powers 

¥!Rotation change correlates with 
¥! Increasing R/Lte  

¥! Decreasing R/Lti 

¥! Increasing Te/Ti 
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¥! Considered Explanations 

¥! Plasma Response to ECRH Power 

Overview 

¥! Increase in momentum diffusivity 
¥! Changes in torque deposition profiles 
¥! Coriolis pinch 
¥! Change in fast ion distribution 
¥! Estimate of required outward pinch or counter-current torque 

¥! Experiment description  
¥! Effect on temperature and density profiles 
¥! Rotation behavior: impurities and main ions 
¥! Sensitivity to ECRH deposition location and power level 
¥! Correlations with Te, Ti, and Te/Ti 



Increase in D# canÕt explain all observations 

¥! If momentum transport is purely diffusive 

    How big would the diffusion have to be? 

¥! Low ECRH power and/or 
  strong central torque  

¥!  fully explained by reasonable   
  increases diffusivity (P=0.5-1) 

¥! High ECRH power and/or  
 low central torque 

¥! Deff > 100m2/s! (P>10) 
¥! Negative diffusivities 

! 

" v = nimiDeff

dV# i

dr

Momentum diffusivity 
plays an important role, 
but canÕt be the only 
mechanism at work! 
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ECRH does not effect torque deposition 

ECRH OFF 7.3-7.9s
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¥! Could changes in Te an ne 
result in different torque 
deposition profile? 
¥! Torque deposition calculated 

with TRANSP 
¥! No, no significant change in 

torque between non- ECRH 
and ECRH phases 
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ECRH does not affect fast ion distribution 

¥! Increased loss of core fast ions 
from plasma core?  
¥! No, no significant mode activity  
¥! Measured and TRANSP calculated 

neutron rates agree very well in all 
phases 

2 3 4 5 6 7 8 9
! 9

! 8

! 7

! 6

! 5

! 4

! 3

! 2

! 1

0

 

R/LTi

R
V

�F�
��C �F

PECRH =0 MW
PECRH = 0.65MW
PECRH=1.5-2MW

¥!Reduction/reversal of Coriolis 
momentum pinch in ECRH 
phases? 
¥! No, GS2 predicts increase in the 

Coriolis pinch (inward) 
¥! due to its dependence on ne 

gradient 

Times (s)

Measured
TRANSP
#25830

Neutron Rate

0 2 4 6 8

0.2

0.4

0.6

0.8

1.0

-0.2

0.0

6e
14

 N
eu

tr
on

s/
s

11/13 



12/13 

Additional term needed in momentum 
conservation equation to explain observations 

¥! Results suggest outward pinch or 
counter-current directed torque 
¥! Residual stress momentum flux  

 triggered by ECRH induced changes 
 in core profiles? 

¥! Can estimate pinch by assuming: 
¥! "$=" i  
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Additional term needed in momentum 
conservation equation to explain observations 

¥! Results suggest outward pinch or 
counter-current directed torque 
¥! Residual stress momentum flux  

 triggered by ECRH induced changes 
 in core profiles? 

¥! Can estimate pinch by assuming: 
¥! "$=" i  

¥! Can estimate torque by additional 
assumption:  
¥!Vcon: (a) remains unchanged 

     (b) scales with increase in " i 
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Summary and Conclusions 
¥! Dramatic decreases in toroidal  rotation have been observed 

when ECRH is applied to low-current NBI heated H-mode 
discharges in the ASDEX Upgrade tokamak 

¥! The change appears to be a core effect and is likely connected 
to the ECRH induced changes in the core electron and ion 
temperature profile 

¥! Data can not be explained by  
¥! an increase in diffusivity 
¥! a modification to NBI torque deposition profile 
¥! a preferential loss of fast ions 
¥! a decrease in Coriolis pinch 

¥! Results indicate presence of either an outward pinch or an 
intrinsic counter-current directed torque profiles 

¥! Source of this convection/torque remains unclear 
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Rotation well correlated with temperature 

¥!Gradient scale length of rotation 
¥! linear with R/Lti 

¥! shows discrete jump with 
increasing R/ Lte (=8) 
¥! equivalent to Te/Ti~1.4 

9 

¥!Rotation change sensitive to the 
level of ECRH power 

¥! Flattest (most hollow) profiles 
obtained for highest ECRH 
powers 

¥!Rotation change correlates with 
¥! Increasing R/Lte  

¥! Decreasing R/Lti 

¥! Increasing Te/Ti 
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AUG diagnostics provide complete profiles 

¥! Impurity ion toroidal rotation, 
temperature, and brightness measured via 
core charge exchange recombination 
spectroscopy (CXRS) diagnostic 

¥! 15 lines of sight 
¥! 0 < ! po l< 0.9 
¥! ~3cm radial resolution 

¥! 20ms integration time 
¥! B4+ (494.467nm) or C5+ (529.059nm) 
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¥! Electron temperature from electron cyclotron emission (ECE) diagnostic [] 
¥! Standard settings: 0 < ! po l< 1.0  
¥! Radial resolution ~1cm 
¥! Temporal resolution ~ 31kHz 

¥! Electron density from integrated data analysis (IDA) diagnostic 
¥! Full profiles by combining edge lithium beam and line integrated interferometry [] 
¥! Temporal resolution ~ 20kHz 
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