Gyrokinetic Modelling
of Electron and Boron Density Profiles
of H-mode plasmas in ASDEX Upgrade

Clemente Angioni and Rachael M. McDermott
E. Fable, R.O. Fischer, T. Pütterich, F. Ryter, G. Tardini
and the ASDEX Upgrade Team

J. Candy and R.E. Waltz are warmly acknowledged for providing
GYRO, M. Kotschenreuther and W. Dorland for providing GS2
Motivations

- Electron particle transport largely understood at qualitative level, requires further quantitative validation.

- At the same time, achieved understanding on electron particle transport can be used as a handle to shed light on the not yet fully unraveled physics of impurity transport.

- Simultaneous comparison between theoretical predictions and observations of electron particle and impurity transport expected to shed mutual light on the physical mechanisms responsible for both.

- In case theoretical modelling is found in qualitative / quantitative agreement, then it can lead to the identification of the control parameters which govern the response of electron and impurity densities.

- During the last AUG campaign, experiments on core plasma response to central ECH in NBI heated H-mode plasmas (toroidal rotation, electron and ion temperature, electron and boron densities) [McDermott EPS 2010 & this mtg 04.01]
Outline

- Survey of experimental observations, central ECH in NBI heated H-mode plasmas in AUG [R. McDermott EPS 2010 P1.1062 & this mtg 04.01]

- Local parameters, modelling approach and numerical tools

- Modelling of normalized logarithmic gradient of the electron density profile

\[\frac{R}{L_{ne}} = - \frac{Rdn_e}{dr}/n_e \]

- Modelling of the normalized logarithmic gradient of the Boron density profile, role of rotation

\[\frac{R}{L_{n_B}} = - \frac{Rdn_B}{dr}/n_B \]

- Conclusions
Central ECH increases the density peaking in AUG NBI heated H-modes at low plasma current

- ... and flattens ion temperature and rotation [McDermott EPS 2010 & this mtg 04.01]

- Confirms and extends previous observations [Manini PPCF 04 & NF 06, Angioni NF 04 & PoP 05]
Boron density profiles are flat or hollow in NBI heated only phases

- Likewise electron density, boron density peaking increases in response to central ECH, but remains significantly less peaked than electrons around mid-radius

- Flat to hollow carbon profiles in H-modes also observed in JET [Weisen NF 05, Giroud IAEA 06]
Local parameters at $r/a = 0.5$ where R/L_{ne} is maximum, input of gyrokinetic modelling

- Average values over stationary phases with various NBI / ECH heating powers
- R/L_{ne} increases with increasing T_e / T_i, L_{Ti} / L_{Te} and decreasing collisionality

![Graphs showing R/L_{ne} as a function of various parameters](image-url)
Boron mostly hollow or flat with NBI only, moderately peaked with high ECH power

- R/LnB at r/a = 0.5 remains always smaller than the corresponding R/Lne

![Graph 1](image1)

![Graph 2](image2)
Compare density peaking with previous multi-device database

- Dependence on collisionality stronger with respect to previous database, suggests a combined effect of reduced collisionality and increased Te/Ti & LTi/LTe in enhancing the density peaking.

[Angioni PPCF 09]
GK modelling looks for R/Ln at which particle flux over heat flux matches the exp value

- Intepretative transport analysis (particle, power balance) with TRANSP & ASTRA
- Particle source provided by beam neutrals only (wall neutrals neglected)
- Largest uncertainty from profile of radiated power density
- For given set of input parameters, taken from experimental measurements,
- Identify value of R/Ln at which

$$\frac{\Gamma_{trb}}{Q_{tot trb}} = \frac{\Gamma_{NBI} - \Gamma_{W}}{Q_{H exp} - Q_{inc}}$$

- Good agreement between GK linear (GS2) and nonlinear (GYRO) calculations of R/Ln scans
- QL rule from QuaLiKiz [Bourdelle PoP 07]

Nonlinear : GYRO & Linear : GS2
Experimental behaviour reproduced by QL & NL gyrokinetic modelling

- Microinstabilities and turbulence are ITG
- Mode real frequency moves from large (NBI only) to close to zero (high ECH)
- Real frequency almost perfect proxy of both measured and predicted value of \(R/L_{ne} \)
 [Fable PPCF 2010]
- Results are sensitive to input parameters (e.g. \(\frac{T_e}{T_i} \), \(R/L_{Te} \), \(\nu_{ei} \))

![Graphs showing experimental data and predictions for QL GS2, NL GYRO](image)
All parameters important to reproduce experimental behaviour

- Any single parameter varied alone \([T_e/T_i, \nu_{ei}, (R/L_{Te}, R/L_{Ti})]\)
predicts an increase of R/L_ne much weaker than when all parameters are varied together, like in the experiment.
Better understanding on the physical mechanisms from an analytic expression

- **Gyrokinetic equation**

\[
(\omega - \omega_{Gk} + iv_{ei}) \hat{g}_k = \left\{ \omega_{Dk} \left[\frac{R}{L_n} + \left(\frac{E}{T_e} - \frac{3}{2} \right) \frac{R}{L_{Te}} \right] - \omega \right\} F_M J_0(k_{\perp} \rho_s) \hat{\phi}_k,
\]

- **Particle flux**

\[
\Gamma_{QL} = \sum_k \left(\frac{k_y c_s^2}{\Omega_{ci}} \int d^3v F_M \frac{(\hat{\gamma}_k + \hat{v}_k)[R/L_n + (E/T_e - 3/2)R/L_{Te}] - (\hat{\gamma}_k \hat{\omega}_{Gk} - \hat{\omega}_{rk} \hat{v}_k)}{(\hat{\omega}_{rk} + \hat{\omega}_{Gk})^2 + (\hat{\gamma}_k + \hat{v}_k)^2} J_0(k_{\perp} \rho_s)^2 |\hat{\phi}_k|^2 \right).
\]

- With decreasing ITG real frequency, and increasing R/LTe,
 - outward contribution produced by collisions decreases, and
 - inward contribution at low energy from thermodiffusion is enhanced

[Angioni PPCF 09, Angioni PoP 09, Fable PPCF 10]
With ECH, outward pure convection drops and inward thermodiffusion increases

- Pure convection is outward, and decreases with decreasing real frequency (term $\hat{\omega}_r k \hat{D}_k$).

- Thermodiffusion contribution increases (increase of R/L_{Te}).

- The two effects together lead to the strong increase of density peaking with increasing ECH power.

![Graph showing the relationship between D_{Th}/D_N and $R_{V_{tot}}/D_N$ with T_e/T_i.
Modelling of Boron, include both turbulent and neoclassical transport

- Sum turbulent and neoclassical convection and diffusion

\[
\frac{R}{L_{nZ}} = - \frac{RV_{Z \text{ trb}} + RV_{Z \text{ NC}}}{D_{N Z \text{ trb}} + D_{N Z \text{ NC}}}
\]

\[
\downarrow
\]

\[
\frac{R_i}{L_{nZ}} = - \frac{RV_{Z \text{ trb}}/\chi_{i \text{ trb}} + RV_{Z \text{ NC}}/\chi_{i \text{ PBan}}}{D_{Z \text{ trb}}/\chi_{i \text{ trb}} + D_{Z \text{ NC}}/\chi_{i \text{ PBan}}}
\]

- Normalization to effective heat conductivity ensures appropriate size of turbulent transport component, as compared with actual experimental heat flux
GK modelling of Boron, turbulent transport contributions

- Turbulent impurity flux can be decomposed in [Y. Camenen et al PoP 2009]
diagonal diffusion, thermo-diffusion, roto-diffusion and pure convection

\[
\frac{R \Gamma_{nZ}}{nZ} = D_{NZ} \frac{R}{L_{nZ}} + D_{ThZ} \frac{R}{L_{TZ}} + D_{UZ} u'_Z + RV_{pZ}
\]

- Turbulent impurity flux computed by gyrokinetic calculations in the plasma rotating frame
- Gyrokinetic formulation described in [A.G. Peeters et al. PoP 2009] has been implemented in GS2 [N. Kluy et al PoP 2009]

- In this frame, toroidal rotation produces the Coriolis drift, and its radial gradient becomes

\[
u'_Z = R^2 d\Omega_Z / dr / v_{thZ}
\]

- Centrifugal effects have been neglected (but might be non-negligible …)
Neoclassical transport almost negligible at $r/a = 0.5$, turbulent roto-diffusion small but significant

- Turbulent diffusion increases with increasing T_e/T_i (increasing ECH power)
- Turbulent thermodiffusion outward, turbulent pure convection inward (both can be large)
- Roto-diffusion smaller, but non-negligible
Comparison over the entire dataset delivers a promising (may I say satisfactory?) agreement

- Agreement for the NBI heated only phase, roto-diffusion is the critical ingredient to predict negative values of R/LnB (local hollowness)
- Experimental trend from R/LnB \(\leq 0\) with NBI only to R/LnB > 0 with high ECH power is reproduced by the modelling
- However particularly the phase with low ECH power is not predicted accurately

With roto-diffusion

Without roto-diffusion
Outward thermodiffusion and roto-diffusion become small with high ECH power, leading to positive R/LnB

- With negligible neoclassical transport, R/LnB results from the sum of turbulent contributions only

\[
\frac{R}{LnB} \approx -\frac{D_{ThZ}}{D_{NZ}} \frac{R}{L_{TB}} - \frac{D_{UZ}}{D_{NZ}} u_{Br}' - \frac{RV_{PZ}}{D_{NZ}}
\]
Small variations of parameters can have large impact on the R/LnB predictions

- Predictions of R/LnB result from unbalance among big & opposite contributions, can be largely modified by relatively small variations of each one
- Reduction or increase of R/L_{TB} and/or u’ can largely impact predicted R/LnB, particularly for the low ECH phase
- Role of roto-diffusion to provide almost continuous transition from slightly hollow to moderately peaked boron profiles with increasing ECH power is confirmed

![Graph showing the impact of roto-diffusion on R/LnB predictions](image)
Conclusions

- Electron and boron density peaking increases in response to central ECH in NBI heated AUG H-mode plasmas. Boron significantly less peaked than electrons, can be locally hollow with NBI only.

- Gyrokinetic predictions of R/Lne and R/LnB are in agreement with the observations (quantitative for electrons, promising/satisfactory for boron).

- Thereby, theoretical modelling allows the identification of control parameters which govern the electron and boron density responses.

- Combination of effects (increase of Te/Ti & LTi/LTe in ITG turbulence) explain electron density peaking, where the real frequency of the mode is shown to be an almost perfect proxy of R/Lne.

- “... density profile behaviour can be interpreted as a macroscopic fingerprint of the type of turbulence present in the core of the plasma“ [Angioni PPCF 09]

- Neoclassical transport negligible, turbulent roto-diffusion appears to be the necessary ingredient to predict the observed variation from slightly hollow to moderately peaked boron profiles with increasing ECH power.

- Roto-diffusion likely to be the missing ingredient which can explain hollow carbon profiles in typical H-mode plasma conditions.
THE END